分析 (1)(1)以A为坐标原点,AB所在直线为x轴,AB的垂线为y轴,建立平面直角坐标系,则C(bcosA,bsinA),B(c,0),可得$\overrightarrow{BC}$=(c-bcosA,bsinA).再利用数量积运算性质即可证明.
(2)利用余弦定理代入化简可得b2+c2-a2=-bc,再利用余弦定理即可得出.
解答 (1)证明:(1)以A为坐标原点,AB所在直线为x轴,AB的垂线为y轴,建立平面直角坐标系,则C(bcosA,bsinA),B(c,0)
∴$\overrightarrow{BC}$=(c-bcosA,bsinA).
∴a2=(c-bcosA)2+(bsinA)2=b2+c2-2bccosA.
(2)解:∵2a2-bc=2(bccosA+cacosB+abcosC),
∴2a2-bc=b2+c2-a2+c2+a2-b2+a2+b2-c2,
∴b2+c2-a2=-bc=2bccosA,
∴cosA=-$\frac{1}{2}$,A∈(0,π),
∴A=$\frac{2π}{3}$.
点评 本题考查了余弦定理的证明及其应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{3}$ | B. | $\frac{2}{3}\sqrt{39}$ | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{39}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com