分析 先求出命题p,q为真时,a的取值范围;
(1)若p∧q为真,则求两个范围的交集即可;
(2)若p∧q为为假,p∨q为真,分类求出a的范围,综合可得答案.
解答 解:当a>0时,
若命题p:A=∅为真,
则$\left\{\begin{array}{l}a≠0\\△=4-4a(2a-1)<0\end{array}\right.$,解得:a∈(-∞,-$\frac{1}{2}$)∪(1,+∞),
∴a∈(1,+∞),
若命题q:B=R为真.
则2$\sqrt{a}$-4≤0,
解得:a∈(0,4]
(1)若p∧q为真,则a∈(1,4],
故a的最大值为4;
(2)若p∧q为为假,p∨q为真,
则p,q一真一假,
若p真q假,则a∈(4,+∞),
若p假q真,则a∈(0,1],
综上可得:a∈(0,1]∪(4,+∞)
点评 本题以命题的真假判断与应用为载体,考查了复合命题,二次方程根的个数,对数函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | $\frac{3}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (5,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{3}$ | B. | $\frac{2}{3}\sqrt{39}$ | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{39}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{n+1}$ | B. | $\frac{4n}{n+1}$ | C. | $\frac{3n}{n+1}$ | D. | $\frac{5n}{n+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com