精英家教网 > 高中数学 > 题目详情
13.在△ABC中,A>B,则下列不等式正确的个数为(  )
①sinA>sinB ②cosA<cosB ③sin2A>sin2B ④cos2A<cos2B.
A.0B.1C.2D.3

分析 利用三角形内角和定理和正弦定理以及二倍角公式化简可判断.

解答 解:在△ABC中,0<A<π,0<B<,π,且0<B+A<π,
由①,A>B,则a>b,利用正弦定理可得 a=2rsinA,b=2rsinB,故sinA>sinB.故①对
由②,因为△ABC中,利用余弦函数在(0,π)递减,可得A>B,则cosA<cosB,故②对.
 对于③,例如A=60°,B=45°,满足A>B,但不满足sin2A>sin2B,所以③不对;
对于④,因为在锐角△ABC中,A>B,所以a>b,利用正弦定理可得 a=2rsinA,b=2rsinB,故sinA>sinB,所以利用二倍角公式即 1-2sin2 A<1-2sin2 B,∴cos2A<cos2B,故④对.
正确的是:①②④
故选D

点评 本题主要考查了三角函数的单调性和正弦定理的运用能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知A(2,3)B(-3,-2)若有直线l:kx-y+1-k=0,与线段AB相交,则k的取值范围为(  )
A.k≥2或k≤$\frac{3}{4}$B.$\frac{3}{4}$≤k≤2C.k≥$\frac{3}{4}$D.k≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=loga(x-k)的图象过点(4,0),又其反函数f-1(x)的图象过点(1,7),则函数y=x-a是(  )
A.增函数B.减函数C.奇函数D.偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(x+$\frac{π}{3}}$)cosx.
(1)若x∈[0,$\frac{π}{2}}$],求f(x)的取值范围;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数-9,a1,a2,-1成等差数列,-9,b1,b2,b3,-1成等比数列,则a2b2-a1b2等于(  )
A.8B.-8C.±8D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,集合A={x|ax2-2x+2a-1=0},B={y|y=log2(x+$\frac{a}{x}$-4)},p:A=∅,q:B=R.
(1)若p∧q为真,求a的最大值;
(2)若p∧q为为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知二次函数f(x)=2x2-(a+6)x-2a2-a,若在[0,1]上至少存在一个实数b,是F(b)>0,则实数a的取值范围是(  )
A.$(-\frac{1}{2},0)$B.$(-\frac{1}{2},\frac{1}{2})$C.$(0,\frac{1}{2})$D.$[-\frac{1}{2},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下面判断正确的是(  )
A.p假q真B.“p∨q”为真C.“p∧q”为真D.“¬q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=4sin2x是(  )
A.周期为$\frac{π}{2}$的奇函数B.周期为$\frac{π}{2}$的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

同步练习册答案