精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+$\sqrt{3}$bsinC-a-c=0,则角B=$\frac{π}{3}$.

分析 已知等式利用正弦定理化简,整理后得到cosB=$\frac{1}{2}$,结合B的范围即可得解B的值.

解答 证明:在△ABC中,∵bcosC+$\sqrt{3}$bsinC-a-c=0,
∴利用正弦定理化简得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,
即sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴$\sqrt{3}$sinB=cosB+1,即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,
∴-$\frac{π}{6}$<B-$\frac{π}{6}$<$\frac{5π}{6}$,
∴B-$\frac{π}{6}$=$\frac{π}{6}$,即B=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题主要考查了正弦定理,特殊角的三角函数值,两角和与差的正弦函数公式在解三角形中的应用,正弦定理是解决本题的关键.综合性较强,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=f(x-2)的定义域为[0,3],则y=f(x2)的定义域为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A、B、C所对的边分别是a,b,c,若A=60°,b=1,其面积为$\sqrt{3}$.则$\frac{a+b+c}{sinA+sinB+sinC}$的值为(  )
A.$3\sqrt{3}$B.$\frac{2}{3}\sqrt{39}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{\sqrt{39}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,b=2,A=$\frac{π}{3}$,B=$\frac{π}{4}$,则a的值为(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$2\sqrt{3}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两个等差数列{an},{bn}的前n项和分别记为Sn,Tn,$\frac{S_n}{T_n}$=$\frac{7n+1}{n+3}$,则$\frac{{{a_2}+{a_5}+{a_{17}}+{a_{22}}}}{{{b_8}+{b_{10}}+{b_{12}}+{b_{16}}}}$=$\frac{31}{5}$,$\frac{a_5}{b_5}$=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x+x-1=4,则 x2-x-2=±8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=($\frac{\sqrt{2}}{2}$)3,b=40.3,c=log40.3,则a,b,c的大小是(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax(0<a且a≠1)满足f(2)=81,则f(-$\frac{1}{2}$)=(  )
A.±1B.±3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平行四边形ABCD中,BD=4$\sqrt{3}$,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D为60°
(1)求证:BC⊥BD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案