精英家教网 > 高中数学 > 题目详情
15.已知直线l1:(1+4k)x-(2-3k)y+(2-14k)=0,圆C:x2+y2-6x-8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2,若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.

分析 (1)直线方程可整理为(x-2y+2)+(4x+3y-14)k=0,可得直线过定点;求出圆心C到点P(2,2)的距离,与半径比较,可得可得直线l1与圆的位置关系;
(2)$AB+EF=2\sqrt{16-{d_2}^2}+2\sqrt{16-{d_1}^2}$,利用基本不等式,即可求AB+EF的最大值.

解答 解:(1)直线与圆相交…(2分)
证明:直线方程可整理为(x-2y+2)+(4x+3y-14)k=0
所以$\left\{{\begin{array}{l}{x-2y+2=0}\\{4x+3y-14=0}\end{array}}\right.$解得$\left\{{\begin{array}{l}{x=2}\\{y=2}\end{array}}\right.$
所以直线过定点P(2,2)…(5分)
圆C方程可整理为(x-3)2+(y-4)2=16
因为圆心C到点P(2,2)的距离d为$d=\sqrt{1+4}=\sqrt{5}$
由$d=\sqrt{5}<4$,所以直线与圆C相交…(6分)
(2)设点C到直线AB,EF的距离分别为d1,d2(d1,d2≥0)
则$d_1^2+d_2^2=5$…(8分)
又$AB=2\sqrt{16-{d_1}^2},EF=2\sqrt{16-{d_2}^2}$
所以$AB+EF=2\sqrt{16-{d_2}^2}+2\sqrt{16-{d_1}^2}$…(10分)
则$\begin{array}{l}{(AB+EF)^2}={(2\sqrt{16-{d_2}^2}+2\sqrt{16-{d_1}^2})^2}\end{array}$=$4(16-{d_1}^2+16-{d_2}^2+2\sqrt{16-{d_1}^2}•\sqrt{16-{d_2}^2})$
=$4(27+2\sqrt{256-16(d_1^2+d_2^2)+d_1^2•d_2^2}$
=$4(27+2\sqrt{176+d_1^2•d_2^2}$…(12分)
又因为$2d_1^{\;}d_2^{\;}≤d_1^2+d_2^2=5$
所以$d_1^2d_2^2≤\frac{25}{4}$(当且仅当$d_1^{\;}={d_2}=\frac{{\sqrt{10}}}{2}$时取到等号)…(14分)
所以 $\sqrt{176+d_1^2•d_2^2}≤\sqrt{176+\frac{25}{4}}=\sqrt{\frac{729}{4}}=\frac{27}{2}$
所以${(AB+EF)^2}≤4(27+2×\frac{27}{2})=216$
所以$AB+EF≤6\sqrt{6}$
所以AB+EF的最大值为$6\sqrt{6}$…(16分)

点评 本题考查直线与圆的位置关系,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.分别在两个平行平面内的两条直线间的位置关系不可能为②
①平行   ②相交   ③异面    ④垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={1,2,3},B={x|-1<x<2,x∈Z},则A∪B=(  )
A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是某校高二年级举办的歌咏比赛上,五位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(1,2),N(3,2),点F是直线l:y=x-3上的一动点,当∠MFN最大时,过点M,N,F的圆的方程是(x-2)2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆锥的侧面展开图是圆心角为120°、半径为l的扇形,则这个圆锥的表面积与侧面积的比是(  )
A.4:3B.2:1C.5:3D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是区间(-∞,+∞)上的偶函数,且是[0,+∞)上的减函数,则(  )
A.f(-3)<f(-5)B.f(-3)>f(-5)C.f(-3)<f(5)D.f(-3)=f(-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设3a=4,则log23的值等于(  )
A.2aB.aC.$\frac{1}{a}$D.$\frac{2}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx-$\frac{3}{2}$ax2+$\frac{3}{2}$a(a∈R),其导函数为f′(x).
(1)求函数g(x)=f′(x)+(3a-1)x的极值;
(2)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案