精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=log3x+x-5的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=7.

分析 确定函数的定义域为(0,+∞)与单调性,再利用零点存在定理,即可得到结论.

解答 解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,
∵f(4)=log34+4-5>0,f(3)=log33+3-5<0,
∴函数f(x)=log3x+x-5的零点一定在区间[3,4],
函数f(x)=log3x+x-5的零点x0∈[a,b],且b-a=1,a,b∈N*
∴a=3,b=4,a+b=7.
故答案为:7.

点评 本题考查函数的单调性,考查零点存在定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.执行如图程序中,若输出y的值为1,则输入x的值为(  )
A.0B.1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.分别在两个平行平面内的两条直线间的位置关系不可能为②
①平行   ②相交   ③异面    ④垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-1≤x≤10},集合B={x|2x-6≥0}.
求∁R(A∪B);
已知C={x|a<x<a+1},且C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.幂函数y=f(x)的图象经过点(8,2),则此幂函数的解析式为f(x)=${x}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{2^{\;x}}+1,x<1\\{x^2}+ax,x≥1\end{array}\right.$,若f(f(0))=4a,则函数f(x)的值域(  )
A.[-1,+∞)B.(1,+∞)C.(3,+∞)D.[-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={1,2,3},B={x|-1<x<2,x∈Z},则A∪B=(  )
A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是某校高二年级举办的歌咏比赛上,五位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设3a=4,则log23的值等于(  )
A.2aB.aC.$\frac{1}{a}$D.$\frac{2}{a}$

查看答案和解析>>

同步练习册答案