精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}{2^{\;x}}+1,x<1\\{x^2}+ax,x≥1\end{array}\right.$,若f(f(0))=4a,则函数f(x)的值域(  )
A.[-1,+∞)B.(1,+∞)C.(3,+∞)D.[-$\frac{9}{4}$,+∞)

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{2^{\;x}}+1,x<1\\{x^2}+ax,x≥1\end{array}\right.$,结合f(f(0))=4a,构造方程,求出a值,可得函数的值域.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{2^{\;x}}+1,x<1\\{x^2}+ax,x≥1\end{array}\right.$,
∴f(0)=2,
f(f(0))=f(2)=4+2a=4a,
解得:a=2,
故函数f(x)=$\left\{\begin{array}{l}{2}^{x}+1,x<1\\{x}^{2}+2x,x≥1\end{array}\right.$,
当x<1时,f(x)∈(1,3);
x≥1时,f(x)∈[3,+∞),
综上可得:函数f(x)的值域为:(1,+∞),
故选:B.

点评 本题考查的知识点是分段函数的应用,函数的值域,方程思想,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-1|-x,
(1)用分段函数的形式表示该函数,并画出该函数的图象;
(2)写出该函数的值域、单调区间(不要求证明);
(3)若对任意x∈R,不等式|2x-1|≥a+x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图(b)所示.
(1)求证:BC⊥平面ACD; 
(2)求几何体D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设变量x,y满足$\left\{\begin{array}{l}x+y≥4\\ y≥x\\ x≥1\end{array}\right.$,则z=2x+y有(  )
A.最小值3,最大值5B.最小值3,最大值6C.最小值5,最大值6D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=log3x+x-5的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设全集U=R,集合A={x|x2-2x-3<0},B={x|0<x≤4}.
(1)求A∩B,A∪B;
(2)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x∈(-1,3),则函数y=(x-2)2的值域是(  )
A.(1,4)B.[0,9)C.[0,9]D.[1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆x2+y2=9与圆x2+y2-4x+2y-3=0相交于A,B两点,则线段AB的长为$\frac{{12\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f:x→|x|+1是非空集合A到非空集合B的映射,若A={-1,0,1}且集合B只有两个元素,则B={1,2};若B={1,2},则满足条件的集合A的个数是7.

查看答案和解析>>

同步练习册答案