分析 (1)证明AC⊥BC,利用平面与平面垂直的性质定理,证明BC⊥平面ACD.
(2)由(1)可知,BC为三棱锥B-ACD的高,求出BC,S△ACD,即可求解VB-ACD,由等体积性可知,求解几何体D-ABC的体积.
解答 解:(1)证明:在图中,可得AC=BC=4$\sqrt{2}$,从而AC2+BC2=AB2,
故AC⊥BC,又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC?平面ABC,
∴BC⊥平面ACD…(6分)
(2)解:由(1)可知,BC为三棱锥B-ACD的高,BC=4$\sqrt{2}$,S△ACD=8,
∴VB-ACD=$\frac{1}{3}$S△ACD•BC=$\frac{1}{3}$×8×4$\sqrt{2}$=$\frac{32\sqrt{2}}{3}$,
由等体积性可知,几何体D-ABC的体积为$\frac{32\sqrt{2}}{3}$…(12分)
点评 本题考查直线与平面垂直的判定定理的应用,平面与平面垂直的性质定理的应用,几何体的体积的求法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4032}{2016}$ | B. | $\frac{4034}{2017}$ | C. | $\frac{4032}{2018}$ | D. | $\frac{4034}{2018}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,+∞) | B. | (1,+∞) | C. | (3,+∞) | D. | [-$\frac{9}{4}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com