精英家教网 > 高中数学 > 题目详情
8.化简:$\frac{1-cosα}{1+cosα}$=(  )
A.sin2αB.tan2αC.sin2$\frac{α}{2}$D.tan2$\frac{α}{2}$

分析 利用二倍角的正弦函数,余弦函数公式,同角三角函数基本关系式即可化简得解.

解答 解:$\frac{1-cosα}{1+cosα}$=$\frac{2si{n}^{2}\frac{α}{2}}{2co{s}^{2}\frac{α}{2}}$=tan2$\frac{α}{2}$.
故选:D.

点评 本题主要考查了二倍角的正弦函数,余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求使-2a=sinx成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某种商品第一天上市售价42元,以后每天提价2元,并且在开始销售的前10天内每天的销售量与上市天数的关系是g(x)=150-5x(其中x表示天数)
(1)写出上市10天内商品销售价y与天数x的关系式;
(2)求该商品在上市10天内,哪一天的销售金额最大?并求出最大金额.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.代数式(3x2+5xy-7y23展开后,各项数字系数的和是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A、B、C对应的边长分别为a、b、c.已知acosB-$\frac{1}{2}$b=$\frac{{a}^{2}}{c}$-$\frac{bsinB}{sinC}$.
(1)求角A;
(2)若a=$\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=(m2-m-1)x-5m-3为幂函数,则实数m的值为-1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出下列直线的斜截式方程:
(1)直线的倾斜角为45°且在y轴上的截距是2;
(2)直线过点A(3,1)且在y轴上的截距是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且满足Sn=2an+n(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)满足:①f(x)+f(-x)=0(x∈R);②f(-3)=0;③[f(x1)-f(x2)](x1-x2)>0,(x1,x2∈R+,x1≠x2).则不等式x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0≤x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

同步练习册答案