【题目】如图,在直三棱柱中,,,点为棱的中点,点为线段上一动点.
(Ⅰ)求证:当点为线段的中点时,平面;
(Ⅱ)设,试问:是否存在实数,使得平面与平面所成锐二面角的余弦值为?若存在,求出这个实数;若不存在,请说明理由.
【答案】(Ⅰ)见解析;(2)或
【解析】试题分析:
(Ⅰ)连、,由题意可证得.又在平面,从而可得平面.(Ⅱ)由题意可建立空间直角坐标系,结合条件可得,从而可得平面的法向量,同理可得平面的法向量,根据解得或,故存在实数满足条件.
试题解析:
(Ⅰ)证明:连、,
∵点为线段的中点,
∴、、三点共线.
∵点、分别为和的中点,
∴.
在直三棱柱中,,
∴平面,
∴,
又,
∴四边形为正方形,
∴,
∵、平面,
∴平面,
而,
∴平面.
(Ⅱ)解:以为原点,分别以、、为轴、轴、轴建立空间直角坐标系,
连接、,设,
∵,
∴,
∴,∴.
∵点在线段上运动,
∴平面的法向量即为平面的法向量,
设平面的法向量为,
由得,令得,
设平面的法向量为,
由得,
令得,取,
由题意得| ,
∴,
解得或.
∴当或时,平面与平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱AB,CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1;
②平面MB1P⊥平面ND1A1;
③△MB1P在底面ABCD上的射影图形的面积为定值;
④△MB1P在侧面DD1C1C上的射影图形是三角形.
其中正确的命题序号是( )
A. ①B. ②③
C. ①③D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知函数
(1)若直线过点,并且与曲线相切,求直线的方程;
(2)设函数在上有且只有一个零点,求的取值范围。(其中为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了名观众(其中男女).
(1)求这名观众中女性认为好看的人数比男性认为好看的人数多的概率;
(2)设表示这名观众中认为《流浪地球》好看的人数,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知倾斜角为的直线经过抛物线:的焦点,与抛物线相交于、两点,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点的两条直线、分别交抛物线于点、和、,线段和的中点分别为、.如果直线与的倾斜角互余,求证:直线经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.
(1)若数列为“阿当数列”,且,,,求实数的取值范围;
(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.
(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是( )
A. 1000B. 1010C. 1015D. 1030
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com