【题目】已知函数
.
(1)若
的最大值为
,求
的值;
(2)若存在实数
且
,使得
,求证:
.
【答案】(1)
;(2)证明见解析.
【解析】
(1)对函数进行求导,然后根据
的正负性进行分类讨论求出函数的单调性,最后根据题意求出
的值;
(2)根据题意和(1)可以判断出函数的单调性,进而可以确定
介于
之间,不妨设
,这样根据函数的单调性和绝对值的性质进行求解即可.
(1)
,若
,则
,所以
在
上单调递增,
无最值,不合题意;若
,当
时,
,当
时,
,所以函数
在
上单调递增,在
上单调递减,故
的最大值
,解得
,符合题意.
综上,
.
(2)若
,则由(1)知
,所以函数
在
上单调递增,在
上单调递减.若存在实数
,使得
,则
介于
之间,不妨设
,因为
在
上单调递增,在
上单调递减,且
,所以当
时,
,由
,可得
,故
,又
在
上递增,且
,
所以
,所以
,
同理
.所以
,解得
,不等式得证.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,
,
,
,
,
为
的中点.
![]()
(1)平面
平面![]()
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】猜商品的价格游戏, 观众甲:
主持人:高了! 观众甲:
主持人:低了! 观众甲:
主持人:高了! 观众甲:
主持人:低了! 观众甲:
主持人:低了! 则此商品价格所在的区间是 ( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线
,直线l的参数方程为:
(t为参数),直线l与曲线C分别交于
两点.
(1)写出曲线C和直线l的普通方程;
(2)若点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是( )
![]()
A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了![]()
B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势
C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例
D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年3月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从甲地到乙地的蔬菜运输业务.已知该公司统计了往年同期200天内每天配送的蔬菜量X(40≤X<200,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:
蔬菜量X | [40,80) | [80,120) | [120,160) | [160,200) |
天数 | 25 | 50 | 100 | 25 |
若将频率视为概率,试解答如下问题:
(1)该物流公司负责人决定随机抽出3天的数据来分析配送的蔬菜量的情况,求这3天配送的蔬菜量中至多有2天小于120件的概率;
(2)该物流公司拟一次性租赁一批货车专门运营从甲地到乙地的蔬菜运输.已知一辆货车每天只能运营一趟,每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.为使该物流公司此项业务的营业利润最大,该物流公司应一次性租赁几辆货车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:只要
,必有
,则称
具有性质
.
(1)若
具有性质
,且![]()
,求
;
(2)若无穷数列
是等差数列,无穷数列
是等比数列,
,
,
.判断
是否具有性质
,并说明理由;
(3)设
是无穷数列,已知
.求证:“对任意
都具有性质
”的充要条件为“
是常数列”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com