分析 (1)由等比数列的通项公式,解方程可得公比q,即可得到所求通项;
(2)运用等比数列的求和公式,化简整理,结合指数函数的单调性和不等式的性质,即可得证.
解答 解:(1)由等比数列{an}中,2a4-3a3+a2=0,且${a_1}=\frac{1}{2}$,公比q≠1.
得:$2{q^2}-3q+1=0⇒q=\frac{1}{2}$或q=1(舍去),
所以${a_n}={a_1}•{q^{n-1}}=\frac{1}{2}×{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^n}$.
(2)证明:因为${a_1}=\frac{1}{2}$,$q=\frac{1}{2}$,所以${T_n}=\frac{{\frac{1}{2}(1-{{(\frac{1}{2})}^n})}}{{1-\frac{1}{2}}}=1-{(\frac{1}{2})^n}$,
因为$y={(\frac{1}{2})^x}$在R上为减函数,且$y={(\frac{1}{2})^x}>0$恒成立,
所以当n∈N*,n≥1时,$0<{(\frac{1}{2})^n}≤\frac{1}{2}$,
所以$\frac{1}{2}≤{T_n}=1-{(\frac{1}{2})^n}<1$.
点评 本题考查等比数列的通项公式和求和公式的运用,考查数列不等式的证明,注意运用指数函数的单调性和不等式的性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{2}$ | B. | $1-\sqrt{2}$ | C. | $3+2\sqrt{2}$ | D. | $3-2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若向量$\overrightarrow a=(x,y)$,向量$\overrightarrow b=(-y,x)$(xy≠0),则$\overrightarrow a⊥\overrightarrow b$ | |
| B. | 若四边形ABCD为菱形,则$\overrightarrow{AB}=\overrightarrow{DC}\;,\;且|\overrightarrow{AB}|=|\overrightarrow{AD}|$ | |
| C. | 点G是△ABC的重心,则$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow 0$ | |
| D. | △ABC中,$\overrightarrow{AB}$和$\overrightarrow{CA}$的夹角等于A |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18种 | B. | 24种 | C. | 36种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com