精英家教网 > 高中数学 > 题目详情
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.

(1)求的值;
(2)把在前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖,
至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(1)160;(2);(3)

试题分析:(1)分层抽样是安比例抽取,所以根据比例相等列式计算。(2)属古典概型概率,用例举法将所有情况一一例举出来计算基本事件总数,再将符合要求的事件找出来计算出基本事件数,根据古典概型概率公式求其概率。(3)属几何概型概率,数形结合需画出图像分析。
试题解析:解:(1)依题意,由,解得     2分
(2)记事件为“至少有一人上台抽奖”,           3分
从高二代表队人中抽取人上台抽奖的所有基本事件列举如下:共15种可能,                                          5分
其中事件包含的基本事件有9种                        6分
所以                                7分
(3)记事件为“该代表中奖”如图,

所表示的平面区域是以为边的正方形,而中奖所表示的平面区域为阴影部分                         9分
,阴影部分面积     11分
所以该代表中奖的概率为     12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为,乙队获胜的概率为,假设每场比赛的结果互相独立.现已赛完两场,乙队以暂时领先.
(1)求甲队获得这次比赛胜利的概率;
(2)设比赛结束时两队比赛的场数为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记△ABC各边的中点分别为DEF,在ABCDEF中任取4点,若这4点为平行四边形顶点,则称为选取成功.某人连续进行3次这种选取,则至少成功1次的概率是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).
(1)在一次试验中,求卡片上的数字为正数的概率;
(2)在四次试验中,求至少有两次卡片上的数字都为正数的概率;
(3)在两次试验中,记卡片上的数字分别为Xη,试求随机变量XX·η的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

福彩3D是由3个0~9的自然数组成投注号码的彩票,耀摇奖时使用3台摇奖器,各自独立、等可能的随机摇出一个彩球,组成一个3位数,构成中奖号码,下图是近期的中奖号码(如197,244,460等),那么在下期摇奖时个位上出现3的可能性为(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

口袋内装有个大小相同的红球、白球和黑球,其中有个红球,从中摸出个球,若摸出白球的概率为,则摸出黑球的概率为____________.

查看答案和解析>>

同步练习册答案