精英家教网 > 高中数学 > 题目详情
19.若向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),则(  )
A.cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{2}$B.$\overrightarrow a⊥\overrightarrow b$C.$\overrightarrow a∥\overrightarrow b$D.$|{\overrightarrow a}|=|{\overrightarrow b}|$

分析 由已知求出cos<$\overrightarrow{a},\overrightarrow{b}$>,|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow{b}$|=$\sqrt{5}$,由此能求出结果.

解答 解:∵向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-2}{\sqrt{5}•\sqrt{5}}$=-$\frac{2}{5}$,
故A、B、C都错误,
|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow{b}$|=$\sqrt{5}$,
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{5}$,故D正确.
故选:D.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间向量的运算法则及性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4$\sqrt{3}$,∠CDA=120°,点N在线段PB上,且PN=2.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°,点E为线段PC的中点,点F在线段AB上.
(Ⅰ)若AF=$\frac{1}{2}$,求证:CD⊥EF;
(Ⅱ)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow{b}$=(1,-1,0),单位向量$\overrightarrow{n}$满足$\overrightarrow{n}$⊥$\overrightarrow{a}$,$\overrightarrow{n}$⊥$\overrightarrow{b}$,则$\overrightarrow{n}$=($\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=cos2x+3sinx的值域是(  )
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设直线l:y=-$\frac{3}{4}$x+$\frac{5}{4}$,圆O:x2+y2-4x-2y+1=0,求直线l被圆O所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合U={1,2,3,4,5,6},M={1,3,4},则∁UM(  )
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,且an+1=2an+3,n∈N+
(1)求证:数列{an+3}是等比数列;
(2)求数列{n(an+3)}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),圆C的极坐标方程是ρ=4sinθ,以极点为原点,极轴为x轴正方向建立直角坐标系,
(Ⅰ)写出直线l的极坐标方程;
(Ⅱ)求直线l被圆C截得的弦长.

查看答案和解析>>

同步练习册答案