精英家教网 > 高中数学 > 题目详情

设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.
(1)若λ=1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.

(1);(2)

解析试题分析:(1)本题已知条件是,我们要从这个式子想办法得出的简单关系式,变形为,这时我们联想到累乘法求数列通项公式的题型,因此首先由
,又,这个式子可化简为,这样就变成我们熟悉的已知条件,已知解法了;(2)这种类型问题,一种方法是从特殊到一般的方法,可由成等差数列,求出,然后把代入已知等式,得,这个等式比第(1)题难度大点,把化为,有当n≥2时,,整理,得,特别是可变形为,这样与第(1)处理方法相同,可得,即,从而说不得是等差数列.
试题解析:(1)若λ=1,则
又∵,∴,       2分

化简,得.①       4分
∴当时,.②
②-①,得,∴).       6分
∵当n=1时,,∴n=1时上式也成立,
∴数列{an}是首项为1,公比为2的等比数列,an=2n-1).       8分
(2)令n=1,得.令n=2,得.       10分
要使数列是等差数列,必须有,解得λ=0.       11分
λ=0时,,且
n≥2时,
整理,得,       13分
从而
化简,得,所以.      15分
综上所述,),
所以λ=0时,数列是等差数列.       16分
考点:递推公式,累乘法,的关系,等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足:,其中.
(1)求证:数列是等比数列;
(2)令,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列满足:,公比,数列的前项和为,且.
(1)求数列和数列的通项
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式分别为.将中的公共项按照从小到大的顺序排列构成一个新数列记为.
(1)试写出的值,并由此归纳数列的通项公式; 
(2)证明你在(1)所猜想的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,若为常数),则称数列.
(1)若数列数列,,写出所有满足条件的数列的前项;
(2)证明:一个等比数列为数列的充要条件是公比为
(3)若数列满足,设数列的前项和为.是否存在
正整数,使不等式对一切都成立?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,用表示时的函数值中整数值的个数.
(1)求的表达式.
(2)设,求.
(3)设,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,前n项和Sn=an.
(1)求a2,a3;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

查看答案和解析>>

同步练习册答案