精英家教网 > 高中数学 > 题目详情

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

(1);(2)详见解析.

解析试题分析:(1)利用等差数列的性质得到,结合题中的已知条件将等价转化为一元二次方程的两根,从而求出,最终确定等差数列的通项公式;(2)先求出数列的通项公式(利用表示),然后通过“成等比数列”这一条件确定的之间的等量关系,进而将的表达式进一步化简,然后再代数验证.
试题解析:(1)因为是等差数列,由性质知
所以是方程的两个实数根,解得


(2)证明:由题意知∴,∴.
成等比数列,∴ ∴
   ∵  ∴ ∴

∴左边  右边
∴左边右边∴成立.
考点:1.等差数列的通项公式;2.等差数列求和;3.等比中项的性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.
(1)若λ=1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数上两点,若,且P点的横坐标为.
(Ⅰ)求P点的纵坐标;
(Ⅱ)若
(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设公比大于零的等比数列的前项和为,且,数列的前项和为,满足
(Ⅰ)求数列的通项公式;
(Ⅱ)满足对所有的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的数列{}中,a1=1,是数列{}的前n项和,对任意n∈N﹡,有2=2p+p-p(p∈R).
(1)求常数p的值;
(2)求数列{}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,.
(1)求数列的通项公式;
(2) 设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列各项为非负实数,前n项和为,且
(1)求数列的通项公式;
(2)当时,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列的前三项和为,求证:

查看答案和解析>>

同步练习册答案