精英家教网 > 高中数学 > 题目详情
12.在等式sin(  )(1+$\sqrt{3}$tan70°)=1的括号中,填写一个锐角,使得等式成立,这个锐角是10°.

分析 将等式转化成分式形式求值即可.即sin(  )(1+$\sqrt{3}$tan70°)=1转化成求$\frac{1}{1+\sqrt{3}tan70°}的值$

解答 解:由题意:转化成求$\frac{1}{1+\sqrt{3}tan70°}的值$;
由$\frac{1}{1+\sqrt{3}tan70°}$=$\frac{cos70°}{cos70°+\sqrt{3}sin70°}=\frac{cos70°}{2sin(70°+30°)}$=$\frac{sin20°}{2cos10°}=\frac{2sin10°•cos10°}{2cos10°}=sin10°$
故答案为10°

点评 本题考查了“切化弦”的能力和思维的转化.乘法转变成除法求解.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.集合M={x|x2-2x≤0},N={x|x2≥1},则M∩N=(  )
A.[0,1]B.[1,2]C.[0,2]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a∈R,则a=1是直线l1:ax+2y-1=0与直线l2:(a+1)x-ay+4=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2cos(2x+\frac{π}{3})-2cosx+1$.
(1)试将函数f(x)化为f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC中角A、B、C所对的边分别为a、b、c,且f(A)=0,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在(-1,1)上的奇函数f(x),在x∈(-1,0)时,f(x)=2x+2-x
(1)求f(x)在(-1,1)上的表达式;
(2)用定义证明f(x)在(-1,0)上是减函数;
(3)若对于x∈(0,1)上的每一个值,不等式m•2x•f(x)<4x-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.化简$\frac{sin(\frac{π}{2}-α)cos(π+α)}{sin(\frac{3π}{2}+α)}$=cosa.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两条直线都垂直于同一条直线,这两条直线的位置关系是(  )
A.平行B.相交C.异面D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)≤f(1)的x的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α,β∈(0,$\frac{π}{2}$),且sin(α+2β)=$\frac{7}{5}$sinα.
(1)求tan(α+β)-6tanβ的值;
(2)若tanα=3tanβ,求α的值.

查看答案和解析>>

同步练习册答案