精英家教网 > 高中数学 > 题目详情
已知F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,P是双曲线C上一点,且|PF1|+|PF2|=6a,△PF1F2的最小内角为30°,则双曲线C的离心率e为(  )
A、
2
B、2
2
C、
3
D、
4
3
3
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用双曲线的定义和已知即可得出|PF1|,|PF2|,进而确定最小内角,再利用余弦定理和离心率计算公式即可得出.
解答: 解:设|PF1|>|PF2|,则|PF1|-|PF2|=2a,
又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.
则∠PF1F2是△PF1F2的最小内角为30°,
∴(2a)2=(4a)2+(2c)2-2×4a×2c×
3
2

e2-2
3
e+3=0
,解得e=
3

故选:C.
点评:熟练掌握双曲线的定义、离心率计算公式、余弦定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(x,y)在直线x+2y=3上移动,则2x+4y的最小值是(  )
A、8
B、6
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列导数运算正确的是(  )
A、(x+
1
x
)′=1+
1
x2
B、(2x)′=x2x-1
C、(cosx)′=sinx
D、(xlnx)′=lnx+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S={x|x=2n,n∈Z},T={x|x=4k±1,k∈Z},则(  )
A、S?TB、T?S
C、S≠TD、S=T

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
3
5
,则a2014=(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-(a+1)lnx-
a
x
(a∈R),g(x)=
x
ex

(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a<1时,若存在x1∈[1,2],使得对任意的x2∈[1,2],f(x1)<g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为[-1,1].
(1)求g(x)的解析式;
(2)若方程g(x)=m有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-12x+5,x∈R.
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若bcosC=(2a-c)cosB,
(Ⅰ)求∠B的大小;
(Ⅱ)若b=
7
,a-c=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案