精英家教网 > 高中数学 > 题目详情
7.设a>b,则下列不等式成立的是(  )
A.a2>b2B.$\sqrt{a}$>$\sqrt{b}$C.2a>2bD.lga>lgb

分析 利用不等式的基本性质、函数的单调性即可得出.

解答 解:A.取a=1,b=-2,不成立.
B.取a=1,b=-2,不成立.
C.a>b?2a>2b,成立.
D.取a=1,b=-2,不成立.
故选:C.

点评 本题考查了不等式的基本性质、函数的单调性,考查了推理能力由于计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照[40,50),[50,60),[60,70),[70,80)分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列2×2的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
成绩小于60分人数成绩不小于60分人数合计
初中年级
高中年级
合计
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
临界值表:
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=A∪B={x∈Z|0≤x≤6},A∩(∁UB)={1,3,5},则B=(  )
A.{2,4,6}B.{1,3,5}C.{0,2,4,6}D.{x∈Z|0≤x≤6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,渐近线方程是:$y=±\frac{{2\sqrt{5}}}{5}x$,点A(0,b),且△AF1F2的面积为6.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)直线l:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点P,Q,若线段PQ的垂直平分线经过点A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面几何里有射影定理:在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB.拓展到空间,在三棱锥A-BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,类比平面三角形射影定理,得出${({{S_{△ACD}}})^2}$=S△DCO•S△BCD

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是参数)的渐近线方程为x±y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.欲知作者的性别是否与读者的性别有关,某出版公司派人员到各书店随机调查了500位买书的顾客,结果如下:
读者/作家男作家女作家合计
男读者142122264
女读者103133236
合计245255500
则作者的性别与读者的性别有97.5%的把握认为它们有关.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,过点(2,$\frac{π}{6}$)且垂直于极轴的直线的极坐标方程是(  )
A.ρ=$\sqrt{3}$sin θB.ρ=$\sqrt{3}$cos θC.ρsin θ=$\sqrt{3}$D.ρcos θ=$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是(  )
A.$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2B.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2C.e1+e2=2D.e2-e1=2

查看答案和解析>>

同步练习册答案