分析 这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB,我们可以类比这一性质,推理出若在三棱锥A-BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,即可得到答案
解答 解:由已知在平面几何中,
在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB,
我们可以类比这一性质,推理出:
在三棱锥A-BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,
则(S△ACD)2=S△DCO•S△BCD.
故答案为S△DCO•S△BCD
点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{5}$ | D. | $\frac{3\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)、(2) | B. | (1)、(4) | C. | (3)、(4) | D. | (2)、(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y'=3sin2x' | B. | y'=3sin$\frac{x'}{2}$ | C. | y'=$\frac{1}{3}$sin2x' | D. | y'=$\frac{1}{3}sin\frac{x'}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{6}$π | B. | $\frac{3}{2}$π | C. | $\frac{1}{6}$π | D. | $\frac{\sqrt{3}}{3}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com