精英家教网 > 高中数学 > 题目详情
3.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是(  )
A.$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2B.$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2C.e1+e2=2D.e2-e1=2

分析 设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由条件可得m=10,n=2c,再由椭圆和双曲线的定义可得10+n=2a1,10-n=2a2,则n=a1-a2,计算可得$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2.

解答 解:如图,设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由椭圆的定义可得10+n=2a1
由双曲线的定义可得10-n=2a2
则n=a1-a2
∵${e}_{1}=\frac{c}{{a}_{1}}$,${e}_{2}=\frac{c}{{a}_{2}}$,
∴$\frac{1}{{e}_{1}}-\frac{1}{{e}_{2}}=\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}=\frac{{a}_{1}-{a}_{2}}{c}=\frac{n}{c}=\frac{2c}{c}=2$.
故选:B.

点评 本题考查椭圆和双曲线的定义和性质,考查离心率的求法,关键是圆锥曲线定义的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设a>b,则下列不等式成立的是(  )
A.a2>b2B.$\sqrt{a}$>$\sqrt{b}$C.2a>2bD.lga>lgb

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.《数学万花筒》第3页中提到如下“奇特的规律”:
1×1=1
11×11=121
111×111=12321

按照这种模式,第5个式子11111×11111=123454321.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数的定义域为R,对任意x都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2015)+f(2018)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的体积为(  )
A.$\frac{\sqrt{3}}{6}$πB.$\frac{3}{2}$πC.$\frac{1}{6}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式ax2+x+c>0的解集为{x|1<x<3}.
(1)求实数a,c的值;
(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个质点在如图所示的平面直角坐标系中移动,每秒移动一步,第一个四步:第一步,从原点出发向右移动一个单位长度,第二步,向上移动一个单位长度,第三步,向左移动一个单位长度,第四步,向上移动一个单位长度,第二个四步:与前四步方向一致,但移动长度都增加一个单位长度.第三个四步:与前四步方向一致,但移动长度都增加一个单位长度,照此规律,该质点第101秒所在的坐标为(  )
A.(25,625)B.(25,650)C.(26,625)D.(26,650)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知统计某化妆品的广告费用x(千元)与利润y(万元)所得的数据如表所示:
x0134
y2.24.34.86.7
从散点图分析,y与x有较强的线性相关关系,且y=0.95x+a,若投入广告费用为6千元,预计利润为8.3万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=-x3+3x在(3-a2,2a)上有最大值,则实数α的取值范围是(  )
A.$(\frac{1}{2},\sqrt{2})$B.$(\sqrt{2},\sqrt{5}]$C.$(1,\sqrt{2})$D.$(\sqrt{2},\sqrt{5})$

查看答案和解析>>

同步练习册答案