分析 (1)由题意利用一元二次不等式的解法、二次函数的性质、韦达定理,求得a、c的值.
(2)解一元二次不等式求得A,再根据A⊆B,可得-m≤2,由此求得m的范围.
解答 解:(1)依题意,得1,3是方程ax2+x+c=0的两根,且a<0,
所以$\left\{{\begin{array}{l}{a<0}\\{1+3=-\frac{1}{a}}\\{1×3=\frac{c}{a}}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{a=-\frac{1}{4}}\\{c=-\frac{3}{4}}\end{array}}\right.$.
(2)由(1),得$\left\{{\begin{array}{l}{a=-\frac{1}{4}}\\{c=-\frac{3}{4}}\end{array}}\right.$,∴ax2+2x+4c>0,即为$-\frac{1}{4}{x^2}+2x-3>0$,
解得2<x<6,所以A=(2,6).
又3ax+cm<0,即为x+m>0,解得x>-m,所以B=(-m,+∞).
∵A⊆B,∴-m≤2,即m≥-2,∴实数m的取值范围是[-2,+∞).
点评 本题主要考查一元二次不等式的解法,二次函数的性质,集合间的包含关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b,c同号 | B. | b,c同号,a与它们异号 | ||
| C. | a,c同号,b与它们异号 | D. | b,c同号,a与b,c符号关系不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,2,3} | B. | {0,1,2} | C. | {0,2,4} | D. | {0,2,3,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2 | B. | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2 | C. | e1+e2=2 | D. | e2-e1=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{({{k^2}+1})}}$ | B. | $\frac{1}{k^2}$ | C. | $\frac{1}{{{{({k-1})}^2}}}+\frac{1}{k^2}$ | D. | $\frac{1}{{{{({k+1})}^2}}}+\frac{1}{k^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com