精英家教网 > 高中数学 > 题目详情
10.已知集合A={-1,0,1,2,3},集合B={x|x=ab,a,b∈A,且a≠b),则A∩B=(  )
A.{-1,0,2,3}B.{0,1,2}C.{0,2,4}D.{0,2,3,6}

分析 分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={-1,0,1,2,3},
∴集合B={x|x=ab,a,b∈A,且a≠b)={-3,-2,-1,0,2,3,6},
∴A∩B={-1,0,2,3}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$
(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$$+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…
                                         $\frac{1}{1}$
                                  $\frac{1}{2}$             $\frac{1}{2}$
                        $\frac{1}{3}$              $\frac{1}{6}$             $\frac{1}{3}$
               $\frac{1}{4}$              $\frac{1}{12}$             $\frac{1}{12}$          $\frac{1}{4}$
      $\frac{1}{5}$             $\frac{1}{20}$              $\frac{1}{30}$             $\frac{1}{20}$         $\frac{1}{5}$
     …
则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其体积为(  )
A.28πB.37πC.30πD.148π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=3xex+2(e为自然对数的底)
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数的定义域为R,对任意x都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2015)+f(2018)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(sinx+cosx)+a,g(x)=(a2-a+10)ex(a为常数).
(1)已知a=0,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)当0≤x≤π时,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式ax2+x+c>0的解集为{x|1<x<3}.
(1)求实数a,c的值;
(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在同一直角坐标系中,方程y=ax与y=x+a的图形正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知三棱锥S-ABC的三条侧棱长均为10,若∠BSC=α,∠CSA=β,∠ASB=γ且sin2$\frac{α}{2}+{sin^2}\frac{β}{2}={sin^2}\frac{γ}{2}$.
(1)求证:平面SAB⊥平面ABC
(2)若α=$\frac{π}{3},β=\frac{π}{2},γ=\frac{2π}{3}$,求三棱锥S-ABC的体积.

查看答案和解析>>

同步练习册答案