分析 (1)推导出△ABC是直角三角形,且∠ACB=90°,S在底面的射影O为△ABC的外心,从而SO⊥平面ABC,由此能证明平面SAB⊥平面ABC.
(2)分别求出S△ABC和SO,由此能求出三棱锥S-ABC的体积.
解答 证明:(1)∵三棱锥S-ABC的三条侧棱长均为10,![]()
∠BSC=α,∠CSA=β,∠ASB=γ且sin2$\frac{α}{2}+{sin^2}\frac{β}{2}={sin^2}\frac{γ}{2}$.
∴在$△ABS中,A{B^2}=200-200cosγ=200(1-cosγ)=400{sin^2}\frac{γ}{2}$.
同理$A{C^2}=400{sin^2}\frac{β}{2},BC=400{sin^2}\frac{α}{2}$.
∵${sin^2}\frac{α}{2}+{sin^2}\frac{β}{2}={sin^2}\frac{γ}{2}$,
∴AC2+BC2+AB2,∴△ABC是直角三角形,且∠ACB=90°.
又SA=SB=SC=10,则S在底面的射影O为△ABC的外心,
由△ABC是直角三角形知O为斜边AB的中点.
∴SO⊥平面ABC,
∵SO?平面SAB.∴平面SAB⊥平面ABC.
解:(2)∵α=$\frac{π}{3},β=\frac{π}{2},γ=\frac{2π}{3}$,
∴${S_{△ABC}}=\frac{1}{2}AC•BC=200sin\frac{α}{2}sin\frac{β}{2}=50\sqrt{2}$.
∴$SO=\sqrt{S{A^2}-A{O^2}}=100cos\frac{γ}{2}=50$,
∴三棱锥S-ABC的体积$V=\frac{1}{3}×{S}_{△ABC}×SO$=$\frac{1}{3}×50\sqrt{2}×50$=$\frac{250\sqrt{2}}{3}$.
点评 本题考查面面垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,2,3} | B. | {0,1,2} | C. | {0,2,4} | D. | {0,2,3,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 9 | C. | 18 | D. | 54 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>-2 | B. | m>2 | C. | $m>\frac{1}{2}$ | D. | $m>-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .(2,16) | B. | .(-2,-16) | C. | .(4,16) | D. | (2,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com