精英家教网 > 高中数学 > 题目详情
12.双曲线$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是参数)的渐近线方程为x±y=0.

分析 由sec2φ=1+tan2φ,求出双曲线的直角坐标方程为y2-x2=1,由此能求出该双曲线的渐近线方程.

解答 解:∵双曲线$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是参数),
sec2φ=1+tan2φ,
∴双曲线的直角坐标方程为y2-x2=1,
∴双曲线$\left\{\begin{array}{l}{x=tanφ}\\{y=secφ}\end{array}\right.$(φ是参数)的渐近线方程为x±y=0.
故答案为:x±y=0.

点评 本题考查双曲线的渐近线方程的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校为了解高二年级不同性别的学生对取消艺术课的态度(支持或反对)进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为$\frac{1}{9}$,通过对被抽取学生的问卷调查,得到如下2×2列联表:
支持反对总计
男生30
女生25
总计
(1)完成下列联表,并判断能否有99%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
P(K2≥k00.100.0500.0100.0050.001
k02.7069%3.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,曲线C1的方程为x2+y2=1,在以原点为极点,x轴的非负关轴为极轴的极坐标系中,直线l的极坐标方程为$ρ=\frac{8}{cosθ+2sinθ}$.
(1)将C1上的所有点的横坐标和纵坐标分别伸长到原来的2倍和$\sqrt{3}$倍后得到曲线C2,求曲线C2的参数方程;
(2)若P,Q分别为曲线C2与直线l的两个动点,求|PQ|的最小值以及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$
(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$$+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…
                                         $\frac{1}{1}$
                                  $\frac{1}{2}$             $\frac{1}{2}$
                        $\frac{1}{3}$              $\frac{1}{6}$             $\frac{1}{3}$
               $\frac{1}{4}$              $\frac{1}{12}$             $\frac{1}{12}$          $\frac{1}{4}$
      $\frac{1}{5}$             $\frac{1}{20}$              $\frac{1}{30}$             $\frac{1}{20}$         $\frac{1}{5}$
     …
则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a>b,则下列不等式成立的是(  )
A.a2>b2B.$\sqrt{a}$>$\sqrt{b}$C.2a>2bD.lga>lgb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线y=x+b与曲线y=$\sqrt{1-{x^2}}$有公共点,则b的取值范围是(  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[-1,$\sqrt{2}$]C.[-1,1]D.(-1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在样本容量为160的频率分布直方图中,一共有n个小矩形,若其中某一个小矩形的面积等于其余n-1个小矩形面积和的$\frac{1}{4}$,则该组的频数是(  )
A.32B.20C.40D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其体积为(  )
A.28πB.37πC.30πD.148π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式ax2+x+c>0的解集为{x|1<x<3}.
(1)求实数a,c的值;
(2)若不等式ax2+2x+4c>0的解集为A,不等式3ax+cm<0的解集为B,且A⊆B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案