精英家教网 > 高中数学 > 题目详情
3.已知:向量$\vec a\;,\;\vec b\;,\;\vec c\;,\;\vec d$及实数x,y满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow{b}$,$\overrightarrow{d}$=(-y)$\overrightarrow{a}$+x$\overrightarrow{b}$.若$\vec a⊥\vec b$,$\vec c⊥\vec d$且|$\overrightarrow{c}$|≤$\sqrt{10}$
(1)求y=f(x)的函数解析式和定义域
(2)若当$x∈({1\;,\;\sqrt{6}})$时,不等式$\frac{f(x)}{x}$≥mx-7恒成立,求实数m的取值范围.

分析 (1)由向量垂直的性质得y=x3-3x,再由|$\overrightarrow{c}$|≤$\sqrt{10}$,得x4-6x2≤0,由此能求出y=f(x)的函数解析式和定义域.
(2)不等式即为x2-3≥mx-7,即m$≤x+\frac{4}{x}$在x∈(1,$\sqrt{6}$)上恒成立,由此能求出实数m的取值范围.

解答 解:(1)∵向量$\vec a\;,\;\vec b\;,\;\vec c\;,\;\vec d$及实数x,y满足
$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow{b}$,$\overrightarrow{d}$=(-y)$\overrightarrow{a}$+x$\overrightarrow{b}$.$\vec a⊥\vec b$,$\vec c⊥\vec d$,
∴$\overrightarrow{a}•\overrightarrow{b}$=0,$\overrightarrow{c}•\overrightarrow{d}=0$,
∴-y${\overrightarrow{a}}^{2}$+x(x2-3)${\overrightarrow{b}}^{2}$=0,
∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,∴y=x3-3x,
∵|$\overrightarrow{c}$|≤$\sqrt{10}$,∴${\overrightarrow{a}}^{2}+({x}^{2}-3){\overrightarrow{b}}^{2}$≤10,
∴x4-6x2≤0,∴-$\sqrt{6}≤x≤\sqrt{6}$,
∴f(x)=x3-3x,x∈[-$\sqrt{6},\sqrt{6}$].
(2)不等式即为x2-3≥mx-7,
即m$≤x+\frac{4}{x}$在x∈(1,$\sqrt{6}$)上恒成立,
故(x+$\frac{4}{x}$)min=4,∴m≤4,
∴实数m的取值范围是(-∞,4].

点评 本题考查平面向量运算、向量垂直的性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.近年来,空气质量成为人们越来越关注的话题,空气质量指数(AirQualityIndex,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI的茎叶图如下:
(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)
(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;
(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在直角坐标系中,终边落在直线y=x上的角集合是(  )
A.{$\frac{5π}{4}$}B.{$\frac{π}{4}$}C.{2kπ+$\frac{π}{4}$}(k∈Z)D.{kπ+$\frac{π}{4}$}(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式x2-x-2<0的解集为(  )
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x<-2或x>1}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用反证法证明命题“若a2+b2≠0,则a,b不全为0(a,b∈R)”时,其假设正确的是(  )
A.a,b中至少有一个为0B.a,b中至少有一个不为0
C.a,b全为0D.a,b中只有一个不为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知为{an}等差数列,且a2=2,a3=-4,则公差d=(  )
A.27B.-11C.-6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(0,-1)$,则向量$\vec a+\vec b$的坐标是(  )
A.(3,-1)B.(-3,1)C.(-3,-1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线的方程为$\frac{x^2}{25}-\frac{y^2}{25}$=1,则此双曲线的离心率为$\sqrt{2}$渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是
 甲 0
 乙 2
由此判断性能较好的一台是乙.

查看答案和解析>>

同步练习册答案