精英家教网 > 高中数学 > 题目详情
10.抛物线y2=16x的焦点为F,点A在y轴上,且满足|$\overrightarrow{OA}$|=|$\overrightarrow{OF}$|,抛物线的准线与x轴的交点是B,则$\overrightarrow{FA}$•$\overrightarrow{AB}$=(  )
A.-4B.4C.0D.-4或4

分析 求得抛物线的焦点坐标,由条件可得A的坐标,再由抛物线的准线可得B的坐标,得到向量FA,AB的坐标,由数量积的坐标表示,计算即可得到所求值.

解答 解:抛物线y2=16x的焦点为F(4,0),
|$\overrightarrow{OA}$|=|$\overrightarrow{OF}$|,可得A(0,±4),
又B(-4,0),
即有$\overrightarrow{FA}$=(-4,4),$\overrightarrow{AB}$=(-4,-4)
或$\overrightarrow{FA}$=(-4,-4),$\overrightarrow{AB}$=(-4,4)
则有$\overrightarrow{FA}$•$\overrightarrow{AB}$=16-16=0,
故选:C.

点评 本题考查抛物线的方程和性质,考查向量的坐标运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an},{bn}满足a1=1,an=3an-1+2n-1(n≥2,n∈N*),bn=an+2n(n∈N*),
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an
(1)证明:数列{$\frac{{a}_{n}}{n}$}是等比数列;
(2)求通项an与前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若圆x2+y2-2x-4y=0的圆心到过原点的直线l的距离为1,则直线l的方程为(  )
A.3x-4y=0或x=0B.4x-3y=0
C.3x-4y=0或4x-3y=0D.3x-4y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前6项和S6=48,a1=3.
(1)求通项公式an及其前n项的和Sn
(2)求数列{$\frac{1}{{S}_{n}}$}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将n封投入m个信封,其中n封信恰好投入同一个信箱的概率是(  )
A.$\frac{1}{{m}^{n}}$B.$\frac{1}{{n}^{m}}$C.$\frac{1}{{m}^{n-1}}$D.$\frac{1}{{n}^{m-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,若a1=1,Sn=nan-n(n-1)(n∈N*
(1)求证:数列{an}为等差数列.并写出an
(2)若数列{$\frac{1}{{{a}_{n}a}_{n+1}}$}的前n项和为Tn.问满足Tn>$\frac{100}{209}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=(2-t)•2x+(t-3).其中t为常数,且t∈R.
(1)求f(0)的值;
(2)求函数g(x)=$\frac{f(x)}{{4}^{x}}$在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第1组中采用简单随机抽样的方法抽到的编号为9,则从编号为[401,430]的30人中应抽的编号是429.

查看答案和解析>>

同步练习册答案