精英家教网 > 高中数学 > 题目详情
13.如图,已知四边形ABCD的直观图是直角梯形A1B1C1D1,且A1B1=B1C1=2A1D1=4,则四边形ABCD的面积为(  )
A.12B.12$\sqrt{2}$C.24$\sqrt{2}$D.24

分析 如图,取∠GB1C1=135°,确定平面图形的形状,求出底边边长,上底边边长,以及高,然后求出面积.

解答 解:如图,取∠GB1C1=135°,过点A1作A1E∥GB1
易求得B1E=4,A1E=4$\sqrt{2}$,故以B1C1和B1A1为坐标轴建立直角坐标系,由直观图原则,B,C与B1,C1重合,然后过点E作B1A1的平行线,且使得AE=2A1E=8$\sqrt{2}$,
即得点A,然后过A作AD∥BC且使得AD=2,
即四边形ABCD上底和下底边长分别为2,4,高为8$\sqrt{2}$,
故其面积S=$\frac{1}{2}$(2+4)×8$\sqrt{2}$=24$\sqrt{2}$.
故选:C.

点评 本题考查平面图形的直观图,考查计算能力,作图能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数中,在(0,+∞)上为增函数的是(  )
A.y=$\sqrt{x+1}$B.y=(x-2)2C.y=3-xD.y=log0.1(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式中,值为$\frac{{\sqrt{3}}}{2}$的是(  )
A.$\sqrt{\frac{{1+cos{{120}°}}}{2}}$B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.cos42°sin12°-sin42°cos12°D.$\frac{{tan{{15}°}}}{{1-{{tan}^2}{{15}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知两个集合A={x|m<$\frac{1-x}{x}$},B={x|log${\;}_{\frac{1}{2}}$x>2}p:实数m为小于5的正整数,q:“x∈A”是“x∈B”的必要不充分条件.
(1)若p是真命题,求A∩B;
(2)若p且q为真命题,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将下列根式化为分数指数幂的形式.
(1)$\root{3}{\sqrt{a\sqrt{a}}}$(a>0);
(2$\frac{1}{\root{3}{x(\root{5}{{x}^{2}})^{2}}}$;
(3)($\root{4}{{b}^{-\frac{2}{3}}}$)${\;}^{-\frac{2}{3}}$(b>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1-2sin2x+2$\sqrt{3}$sinxcosx.
(1)求函数f(x)在[0,2π]上的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若f($\frac{C}{2}$)=2且sin2C=sinA•sinB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数x、y满足2x2+4xy+2y2+x2y2≤9,求u=2$\sqrt{2}$(x+y)+xy的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$$+\frac{8}{1+co{s}^{2}x}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-x<0},B={x|x2+2mx+2m+1<0},A∪B=A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案