函数在区间〔0,1〕上的图像如图所示,则n可能是( )
A.1 | B.2 | C.3 | D.4 |
A
解析试题分析:解:由于本题是选择题,可以用代入法来作,由图得,原函数的最值(极值)点小于0.5.当n=1时,f(x)=ax=a(-2+x),所以f'(x)=a(3x-1)(x-1),令f'(x)=0⇒x=,x=1,即函数在x=处有最值,故A对;
当n=2时,f(x)=a=a(-2+),有f'(x)=a(4-6+2x)=2ax(2x-1)(x-1),令f'(x)=0⇒x=0,x=,x=1,即函数在x=处有最值,故B错;当n=3时,f(x)=a,有f'(x)=a(x-1)(5x-3),令f'(x)=0,⇒x=0,x=1,x=,即函数在x=处有最值,故C错.当n=4时,f(x)=a,有f'(x)=2(3x-2)(x-1),令f'(x)=0,⇒x=0,x=1,x=,即函数在x=处有最值,故D错。故选 A.
考点:函数的最值
点评:本题主要考查函数的最值(极值)点与导函数之间的关系.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.本本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
科目:高中数学 来源: 题型:单选题
已知函数f(x)=|log2|x﹣1||,且关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数解,若最小的实数解为﹣1,则a+b的值为
A.-2 | B.-1 | C.0 | D.1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com