【题目】已知关于
的不等式
.
(1)不等式
的解集为
,求实数
的值;
(2)在(1)的条件下,求不等式
的解集;
(3)解关于
的不等式
.
【答案】(1)
;(2)
;(3)见解析.
【解析】
(1)根据不等式的解与对应的方程的根的关系结合韦达定理可求实数
的值.
(2)移项通分后可把分式不等式转化为一元二次不等式,注意分母不为零.
(3)就
五种情形分类讨论可得不等式的解.
(1)因为不等式
的解集为
,
所以
为
的两个根,所以
,
解得
,故
.
(2)由(1)得
即为
,故
,
所以
,所以
,故原不等式的解集为
.
(3)不等式
等价于
,
整理得到:
.
当
时,不等式的解为
.
当
时,不等式的解为
.
当
时,
,故不等式的解为
.
当
时,
,不等式的解为
.
当
时,
,故不等式的解为
.
综上,当
时,不等式的解为
;当
时,不等式的解为
;
当
时,不等式的解为
;当
时,不等式的解为
;
当
时,不等式的解为
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)求已知曲线
和曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸
之间近似满足关系式
为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(i)根据所给统计量,求
关于
的回归方程;
(ii)已知优等品的收益
(单位:千元)与
的关系
,则当优等品的尺寸为
为何值时,收益
的预报值最大?(精确到0.1)
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的右顶点到其一条渐近线的距离等于
,抛物线
的焦点与双曲线
的右焦点重合,则抛物线
上的动点
到直线
和
距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
![]()
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.函数
在区间
上有且只有
个零点
B.若函数
,则![]()
C.如果函数
在
上单调递增,那么它在
上单调递减
D.若函数
的图象关于点
对称,则函数
为奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
分数段 | 理科人数 | 文科人数 |
|
| |
|
| |
|
|
|
| 正 | 正 |
| 正 |
|
|
|
|
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.
![]()
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,
=2,,
=128,数列{bn}满足b1=1,b2=2,且{
}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com