精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论函数的单调性;

(2) 若函数有两个零点 ,且,证明:

【答案】(1)当时,知上递减;当时, 上递减,在上递增;(2)证明见解析.

【解析】

试题分析:

(1)由函数的解析式了的,分类讨论有:当时,知上递减;当时, 上递减,在上递增;

2)由(1)知, ,且 ,原问题等价于,结合单调性转化为即可,而 ,构造函数,令 ,结合导函数的性质可得,即,则结论得证.

试题解析:

(1)

时, ,知上是递减的;

时, ,知上是递减的,在上递增的.

(2)由(1)知,

依题意,即

得,

得, ,即

欲证,只要

注意到上是递减的,且

只要证明即可,

所以

,知上是递增的,于是,即

,综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是矩形,平面 平面,点分别为中点.

(1)求证: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

1)不等式的解集为,求实数的值;

2)在(1)的条件下,求不等式的解集;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)设直线 与圆相交于两点,求实数的取值范围;

(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/),年用电量为.本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到/)至/)之间,而用户的期望电价为/).经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为/).

1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元/)的函数解析式;(收益实际用电量(实际电价成本价))

2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”关注程度,某机构随机抽取了年龄在岁之间的人进行调查,经统计“年轻人”与“中老年人”的人数之比为

关注

不关注

合计

年轻人

中老年人

合计

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄段有关?

(2)现已用分层抽样的办法从中老年人中选取了人进行问卷调查.若再从这人中选取人进行面对面询问,求事件“选取的人中恰有人关注“中国湖北(潜江)龙虾节””的概率.

附:参考公式,其中

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照《国务院关于印发十三五节能减排综合工作方案的通知》(国发[201674号)的要求,到2020年,全国化学需氧量排放总量要控制在2001万吨以内,要比2015年下降10%假设十三五期间每一年化学需氧量排放总量下降的百分比都相等,2015年后第年的化学需氧量排放总量最大值为万吨.

1)求的解析式;

2)求2019年全国化学需氧量排放总量要控制在多少万吨以内(精确到1万吨).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆的圆心为,半径为.

(1)设,求过点A且与圆相切的直线方程;

(2)设,直线过点A且被圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于甲、乙两个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,现该市有3位申请人在申请公租房:

1)用合适的符号写出样本空间;

2)求没有人申请甲片区房源的概率;

3)求每个片区的房源都有人申请的概率

查看答案和解析>>

同步练习册答案