精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=x2+2mx+2m+3mR),若关于x的方程fx=0有实数根,且两根分别为x1x2,则(x1+x2x1x2,的最大值为()

A. B. 2C. 3D.

【答案】B

【解析】

运用韦达定理和判别式大于等于0,以及二次函数的单调性,可得最大值.

解:∵函数fx)=x2+2mx+2m+3mR),

若关于x的方程fx)=0有实数根,且两根分别为x1x2

x1+x2=﹣2mx1x22m+3

∴(x1+x2x1x2=﹣2m2m+3)=﹣4m2

又△=4m242m+3)≥0,∴m≤﹣1m3

t=﹣4m2m(﹣∞,﹣1]上单调递增,m=﹣1时最大值为2

t=﹣4m2m[3+∞)上单调递减,m3时最大值为﹣54

∴(x1+x2x1x2的最大值为2

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数z满足|z|= 的虚部为2,z所对应的点在第一象限,

(1)z;

(2)z,z2,z-z2在复平面上对应的点分别为A,B,C,cosABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为集合AB{x|x<a}

(1)求集合A

(2)ABa的取值范围;

(3)若全集U{x|x4}a=-1U AA(U B)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(2)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(I)已知函数f(x)=rx﹣xr+(1﹣r)(x>0),其中r为有理数,且0<r<1.
(1)求f(x)的最小值;
(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1 , b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2
(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xαr=αxα1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某自来水厂的蓄水池有吨水,水厂每小时可向蓄水池中注水吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨,其中

)从供水开始到第几小时,蓄水池中的存水量最少? 最少水量是多少吨?

)若蓄水池中水量少于吨时,就会出现供水紧张现象,请问:在一天的小时内,大约有几小时出现供水紧张现象?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,这三天中恰有两天下雨的概率近似为

A.0.35 B.0.25 C.0.20 D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E,F分别是AB,PD的中点,若PA=AD=3,CD=
①求证:AF∥平面PCE
②求证:平面PCE⊥平面PCD
③求直线FC与平面PCE所成角的正弦值.

查看答案和解析>>

同步练习册答案