精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是(  )
A.(-∞,-1]B.[1,+∞)C.(-∞,-2]D.[-2,+∞)

分析 本题是二次函数中区间定轴动的问题,先求出函数的对称轴,再确定出区间与对称轴的位置关系求出实数a的取值范围.

解答 解:由题意,函数的对称轴是x=-$\frac{a}{2}$
∵函数f(x)=x2+ax+3在区间(-∞,1]上递减
∴-$\frac{a}{2}$≥1,解得a≤-2,
故选C.

点评 本题考查函数单调性的性质,解答本题的关键是熟练掌握了二次函数的性质与图象,根据其性质与图象直接得出关于参数的不等式,求出其范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-2x>0},B={x|x>1},则(∁RA)∩B等于(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知ABCD为直角梯形,其中∠B=∠C=90°,以AD为直径作⊙O交BC于E,F两点.证明:
(I) BE=CF;
(II) AB•CD=BE•BF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\frac{lo{g}_{5}\sqrt{2}lo{g}_{7}9}{lo{g}_{5}\frac{1}{3}lo{g}_{\sqrt{7}}\root{3}{16}}$=-$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,b2+S3=21,b3=S2
(1)求an与bn
(2)设数列{bn}的前n项和为Tn,求使不等式4Tn>S15成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知体积为4$\sqrt{6}$的长方体的八个顶点都在球O的球面上,在这个长方体经过一个顶点的三个面中,如果有两个面的面积分别为2$\sqrt{3}$、4$\sqrt{3}$,那么球O的体积等于(  )
A.$\frac{32π}{3}$B.$\frac{16\sqrt{7}π}{3}$C.$\frac{33π}{2}$D.$\frac{11\sqrt{7}π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=4,A,B,C,D四点在球O上,且球O与底面A1B1C1D1相切,则球O的表面积为(  )
A.$\frac{81}{4}$πB.$\frac{9}{4}$πC.$\frac{9}{2}$πD.$\frac{81}{16}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)过点A(1,0),且离心率为$\sqrt{3}$
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正方体ABCD-A′B′C′D′.

(1)设M,N分别是A′D′,A′B′的中点,试在下列三个正方体中各作出一个过正方体顶点且与平面AMN平行的平面(不用写过程)
(2)设S是B′D′的中点,F,G分别是DC,SC的中点,求证:直线GF∥平面BDD′B′.

查看答案和解析>>

同步练习册答案