精英家教网 > 高中数学 > 题目详情
5.已f(x)=xsinx,则f′(x)=(  )
A.cosxB.-cosxC.sinx-xcosxD.sinx+xcosx

分析 根据题意,由导数的乘法计算法则计算即可得答案.

解答 解:根据题意,f(x)=xsinx,
则f′(x)=(x)′sinx+x(sinx)′=sinx+xcosx;
故选:D.

点评 本题考查导数的计算,关键是掌握导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在股票买卖过程中,经常会用各种曲线来描述某一只股票的变化趋势,其中一种曲线是即时价格曲线y=f(x),一种是平均价格曲线y=g(x).例如:f(2)=3表示开始交易后2小时的即时价格为3元,g(2)=4表示开始交易后2小时内所有成交股票的平均价格为4元.下列给出的四个图象中,实线表示y=f(x),虚线表示y=g(x).其中可能正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={1,2,3,4},B={1,2,3},则从集合A到集合B的不同映射的个数是(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面直角坐标系内一点A(3,2).
(1)求经过点A(3,2),且与直线x+y-2=0平行的直线的方程;
(2)求经过点A(3,2),且与直线2x+y-1=0垂直的直线的方程;
(3)求点A(3,2)到直线3x+4y-7=0的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+2ax+1,a≠0.
(Ⅰ) 当a=1时,解不等式f(x)>4;
(Ⅱ) 若函数f(x)在区间(1,2)上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow{a},\overrightarrow{b}$,满足|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{10}$,|$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{2}$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如表:
使用智能手机不使用智能手机总计
学习成绩优秀4812
学习成绩不优秀16218
总计201030
附表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
经计算K2的观测值为10,则下列选项正确的是(  )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响
D.在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一同学在投掷场以50m/s向上斜抛一枚手榴弹(练习用),抛掷方向与水平方向成60°角,问手榴弹能掷多远?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2an+1,n∈N*
(1)证明数列{an+1}是等比数列并求数列{an}的通项公式;
(2)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<2$.

查看答案和解析>>

同步练习册答案