精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,横坐标与纵坐标都在集合A={0,1,2,3,4,5}内任取一个值,则此点正好在直线y=x+1上的概率为
5
36
5
36
分析:根据题意,列举得到的点的全部情况,可得其情况数目,再分析可得这个点在直线y=x+1上的情况,进而由等可能事件的概率公式,计算可得答案.
解答:解:根据题意,得到点的情况有(0,0)、(0,1)、(0,2)、(0,3)、(0,4)、(0,5)、
(1,0)、(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、
(2,0)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、
(3,0)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、
(4,0)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、
(5,0)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5),共36种;
点在y=x+1上的情况有(0,1)、(1,2)、(2,3)、(3,4)、(4,5),共5种,
则点正好在直线y=x+1上的概率为
5
36

故答案为
5
36
点评:本题考查等可能事件的概率计算,要正确列举该点的全部情况,注意点的纵横坐标可以相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案