精英家教网 > 高中数学 > 题目详情
是三条不同的直线,是两个不同的平面,则能使成立是(  )
A.        B.
C.D.
C
对于C:因为,所以可过b作一个平面,使,则b//l,又因为,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图:在三棱锥中,已知点分别为棱的中点.
(1)求证:∥平面
(2)若,求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,已知正方体是底对角线的交点.
求证:(1)
(2 )
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直四棱柱的底面是菱形,,其侧面展开图是边长为的正方形.分别是侧棱上的动点,

(Ⅰ)证明:
(Ⅱ)在棱上,且,若∥平面,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于空间的两条直线和一个平面,下列命题中的真命题是( )
A.若,则B.若 ,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.

(1)求异面直线PA与BC所成角的正切值;
(2)证明平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案