精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=ax3+bx2-3x(a,b∈R)在点处取得x=-1极大值为2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
(注:|f(x1)-f(x2)|≤|f(x)max-f(x)min|).

分析 (Ⅰ)求出导函数,联立求出a,b的值,得出解析式;
(Ⅱ)由题意可知,只需求出函数的极值即可,根据导函数判断函数的极值,得出c的范围.

解答 解:(Ⅰ)f′(x)=3ax2+2bx-3.
由题意,得$\left\{\begin{array}{l}f(-1)=2\\ f′(-1)=0\end{array}$即$\left\{\begin{array}{l}-a+b+3=2\\ 3a-2b-3=0\end{array}$解得$\left\{\begin{array}{l}a=1\\ b=0\end{array}$,
所以f(x)=x3-3x.
(Ⅱ)令f′(x)=0,即3x2-3=0,得x=±1.

x-2(-2,-1)-1(-1,1)1(1,2)2
f′(x)+-+
f(x)-2极大值极小值2
因为f(-1)=2,f(1)=-2,所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2.
则对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4.
所以c的最小值为4.

点评 本题考查了导函数的概念和导函数的应用,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an},S3=6,a9+a11+a13=60,则S13的值为(  )
A.66B.42C.169D.156

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,-6),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.当f′(x0)=0时,f(x0)为f(x)的极大值B.当f′(x0)=0时,f(x0)为f(x)的极小值
C.当f′(x0)=0时,f(x0)为f(x)的极值D.当f(x0)为f(x)的极值时,f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生.得到下面列联表:
数学
物理
85~100分85分以下合计
85~100分3785122
85分以下35143178
合计72228300
现判断数学成绩与物理成绩有关系,则判断的出错率为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
A.0.5%B.1%C.2%D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.满足tanx<$\sqrt{3}$且x∈(0,π)的x的集合为{x|0<x<$\frac{π}{3}$,或$\frac{π}{2}$<x<π}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把67化为二进制数为(  )
A.1 100 001(2)B.1 000 011(2)C.110 000(2)D.1 000 111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知复数z=1+i(i为虚数单位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

同步练习册答案