精英家教网 > 高中数学 > 题目详情
12.直角坐标xOy中,直线l参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sin θ,P为直线l上一动点,当P到圆心C的距离最小时,则点P的直角坐标是(3,0).

分析 设P(3+$\frac{1}{2}$t,$\frac{\sqrt{3}}{2}$t),利用距离公式,可得结论.

解答 解:设P(3+$\frac{1}{2}$t,$\frac{\sqrt{3}}{2}$t),
圆C的极坐标方程为ρ=2$\sqrt{3}$sinθ,
可得直角坐标方程为x2+y2=2$\sqrt{3}$y,
即x2+(y-$\sqrt{3}$)2=3;
∴C(0,$\sqrt{3}$),
∴|PC|=$\sqrt{{(3+\frac{1}{2}t)}^{2}{+(\frac{\sqrt{3}}{2}t-\sqrt{3})}^{2}}$=$\sqrt{{t}^{2}+9}$,
∴t=0时,P到圆心C的距离最小,
P的直角坐标是(3,0),
故答案为:(3,0).

点评 本题考查极坐标与直角坐标互化,考查参数方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知x+2y+3z=6,则2x+4y+8z的最小值为(  )
A.3$\root{3}{6}$B.2$\sqrt{2}$C.12D.12$\root{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(1+x+x2)(1-x)10展开式中x4的系数(  )
A.85B.-85C.135D.-135

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{alnx}{x}$,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,讨论F(x)=f(x)-g(x)的单调区间;
(2)已知函数f(x)的曲线与函数g(x)的曲线有两个交点,设两个交点的横坐标分别为x1,x2,证明:$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})>2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线的方程为C:x2=4y,过点Q(0,2)的一条直线与抛物线C交于A,B两点,若抛物线在A,B两点的切线交于点P.
(1)求点P的轨迹方程;
(2)设直线PQ与直线AB的夹角为α,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图如图所示,则该几何体的体积为$π+\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈({0,\frac{π}{,2}})$,下列不等式中不成立的是(  )
A.sinα+cosα>1B.sinα-cosα<1C.cos(α+β)>cos(α-β)D.sin(α+β)>sin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-(a+1)x-$\frac{1}{x}$.
(1)当a=-$\frac{3}{2}$时,讨论f(x)的单调性;
(2)当a=1时,若g(x)=-x-$\frac{1}{x}$-1,证明:当x>1时,g(x)的图象恒在f(x)的图象上方;
(3)证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N+,n≥2).

查看答案和解析>>

同步练习册答案