| A. | B. | C. | D. |
分析 判断f(x)的奇偶性和单调性,即可得出答案.
解答 解:∵f(-x)=-xecos(-x)=-xecosx=-f(x),
∴f(x)是奇函数,图象关于原点对称,排除A,C;
∵f′(x)=ecosx+xecosx•(-sinx)=ecosx(1-xsinx),
令1-xsinx=0得sinx=$\frac{1}{x}$,
作出y=sinx和y=$\frac{1}{x}$的函数图象可知两图象在(0,π)上存在一个交点(x0,y0),
当0<x<x0时,1-xsinx>0,当x0<x<π时,1-xsinx<0,
∴f(x)在(0,π)先增后减,
故选B.
点评 本题考查了函数奇偶性,单调性的判断,导数与函数单调性的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| 81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
| 06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
| A. | 12 | B. | 33 | C. | 06 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com