精英家教网 > 高中数学 > 题目详情
15.某单位共有10名员工,他们某年的收入如下表:
员工编号12345678910
年薪(万元)44.5656.57.588.5951
(1)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本均值.

分析 (1)ξ取值为0,1,2,求出相应的概率,即可求ξ的分布列和期望;
(2)利用最小二乘法,求出线性回归方程,根据回归方程预测.

解答 解:(1)年薪高于7万的有5人,低于或等于7万的有5人;则ξ取值为0,1,2.
P(ξ=0)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$=$\frac{2}{9}$,P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{5}^{1}}{{C}_{10}^{2}}$=$\frac{5}{9}$,P(ξ=2)=$\frac{{C}_{5}^{2}}{{C}_{10}^{2}}$,
所以ξ的分布列为

ξ012
P$\frac{2}{9}$$\frac{5}{9}$$\frac{2}{9}$
数学期望为E(ξ)=0×$\frac{2}{9}$+1×$\frac{5}{9}$+2×$\frac{2}{9}$=1.
(2)设xi,yi(i=1,2,3,4)分别表示工作年限及相应年薪,
则$\overline{x}$=2.5,$\overline{y}$=6,
$\sum_{i=1}^{4}$(xi-$\overline{x}$)2=2.25+0.25+0.25+2.25=5,$\sum_{i=1}^{4}$(xi-$\overline{x}$)(yi-$\overline{y}$)=-1.5×(-2)+(-0.5)×(-0.5)+0.5×0+1.5×2.5=7,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=1.4,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=6-1.4×2.5=2.5,
∴线性回归方程:y=1.4x+2.5.
当x=5时,y=1.4×5+2.5=9.5,
可预测该员工第5年的年薪收入为9.5万元.

点评 本题考查了古典概型的概率计算,求ξ的分布列和期望,线性回归方程的解法及应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.(1+x+x2)(1-x)10展开式中x4的系数(  )
A.85B.-85C.135D.-135

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈({0,\frac{π}{,2}})$,下列不等式中不成立的是(  )
A.sinα+cosα>1B.sinα-cosα<1C.cos(α+β)>cos(α-β)D.sin(α+β)>sin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且a2=2,S6=21
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{(n+1){a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:
男性女性总计
爱好10
不爱好8
总计30
已知在这30人中随机抽取1人抽到爱好运动的员工的概率是$\frac{8}{15}$.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?
(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=f'(1)ex-1-f(0)x+x2,则f'(1)=2e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx-(a+1)x-$\frac{1}{x}$.
(1)当a=-$\frac{3}{2}$时,讨论f(x)的单调性;
(2)当a=1时,若g(x)=-x-$\frac{1}{x}$-1,证明:当x>1时,g(x)的图象恒在f(x)的图象上方;
(3)证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N+,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从2,4,8,16中任取两个不同的数字,分别记为a,b,则logab为整数的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案