精英家教网 > 高中数学 > 题目详情
3.(1+x+x2)(1-x)10展开式中x4的系数(  )
A.85B.-85C.135D.-135

分析 利用二项式定理展开即可得出.

解答 解:(1+x+x2)(1-x)10=(1-x3)(1-x)9=(1-x3)$(1-9x+{∁}_{9}^{2}{x}^{2}-{∁}_{9}^{3}{x}^{3}+{∁}_{9}^{4}+…)$
因此展开式式中x4的系数=${∁}_{9}^{4}$+9=135.
故选:C.

点评 本题考查了二项式定理的应用、转化方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知sinα+sinβ=$\frac{1}{2}$,cosα+cosβ=$\frac{2}{3}$,则cos(α-β)=$-\frac{47}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数z=i3(1+i)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.经过点P(0,2)的直线l,若直线l与连接A(-$\sqrt{3}$,-1),B(2,0)的线段总有公共点,则直线l的斜率的取值范围是(  )
A.$[-1,\frac{{\sqrt{3}}}{3}]$B.$[-1,\sqrt{3}]$C.$(-∞,-1]∪[\frac{{\sqrt{3}}}{3},+∞)$D.$(-∞,-1]∪[\sqrt{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示,在四面体VABC木块中,P为△VAC的重心,这点P作截面EFGH,若截面EFGH是平行四边形,则该截面把木块分成两部分体积之比为$\frac{7}{20}$. (埴体积小与体积大之比)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线C的方程$\left\{{\begin{array}{l}{x=2t+1}\\{y={t^2}-1}\end{array}}\right.$(t为参数),点(5,a)在曲线C上,则a=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为(  )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12B.33C.06D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直角坐标xOy中,直线l参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sin θ,P为直线l上一动点,当P到圆心C的距离最小时,则点P的直角坐标是(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某单位共有10名员工,他们某年的收入如下表:
员工编号12345678910
年薪(万元)44.5656.57.588.5951
(1)从该单位中任取2人,此2人中年薪收入高于7万的人数记为ξ,求ξ的分布列和期望;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中系数计算公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本均值.

查看答案和解析>>

同步练习册答案