精英家教网 > 高中数学 > 题目详情
14.在复平面内,复数z=i3(1+i)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数z=i3(1+i)=-i(1+i)=-i+1对应的点(1,-1)位于第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,已知命题p:$\overrightarrow{a}$=$\overrightarrow{b}$是$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,复数z的对应点为(1,-1),则z2=(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x+2y+3z=6,则2x+4y+8z的最小值为(  )
A.3$\root{3}{6}$B.2$\sqrt{2}$C.12D.12$\root{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设正项数列{an}的前n项和为Sn,且满足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}({n∈{N^*}})$.
(1)计算a1,a2,a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式;
(3)证明不等式:$\sum_{i=1}^n{\frac{1}{{\sqrt{a_i}}}}>2(\sqrt{n+1}-1)(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用0,1,2,3,4,5这6个数,能组成几个没有重复数字的四位偶数(  )
A.18B.156C.192D.360

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a为实数,函数f(x)=x3-ax2-4x+4a满足f′(1)=0.
(1)求a的值;
(2)求f(x)的单调区间和极值;
(3)若方程f(x)=m只有一个实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(1+x+x2)(1-x)10展开式中x4的系数(  )
A.85B.-85C.135D.-135

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案