分析 (1)代值计算,并猜想结论,
(2)用数学归纳法证明:当n=1时,去证明等式成立;假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.
(3)用数学归纳法证明,当n=1时,去证明不等式成立;假设当n=k时,不等时成立,用上归纳假设后,去证明当n=k+1时,不等式也成立即可
解答 解:(1)当n=1时,${a_1}={S_1}=\frac{1}{2}a_1^2+\frac{1}{2}$,得a1=1; ${a_1}+{a_2}={S_2}=\frac{1}{2}a_2^2+1$,得a2=2${a_1}+{a_2}+{a_3}={S_3}=\frac{1}{2}a_3^2+\frac{3}{2}$,得a3=3,
猜想an=n
(2)证明:(ⅰ)当n=1时,显然成立
(ⅱ)假设当n=k时,ak=k
则当n=k+1时,${a_{k+1}}={S_{k+1}}-{S_k}=\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-({\frac{1}{2}a_k^2+\frac{k}{2}})$
=$\frac{1}{2}a_{k+1}^2+\frac{k+1}{2}-({\frac{1}{2}{k^2}+\frac{k}{2}})$
整理得:$a_{k+1}^2-2{a_{k+1}}-{k^2}+1=0$,即[ak+1-(k+1)][ak+1+(k-1)]=0
结合an>0,解得ak+1=k+1,
于是对于一切的自然数n∈N*,都有an=n.
(3)证明:由(2)可知an=n,(ⅰ)当n=1时,不等式显然成立,
(ⅱ)假设当n=k时,$1+\frac{1}{{\sqrt{2}}}+…+\frac{1}{{\sqrt{k}}}>2(\sqrt{k+1}-1)$
则当n=k+1时,$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}>2(\sqrt{k+1}-1)+\frac{1}{{\sqrt{k+1}}}$
∵2($\sqrt{k+2}$-1)-2($\sqrt{k+1}$-1)-$\frac{1}{\sqrt{k+1}}$=2$\sqrt{k+2}$-2$\sqrt{k+1}$-$\frac{1}{\sqrt{k+1}}$=$\frac{2\sqrt{(k+1)(k+2)}-2(k+1)-1}{\sqrt{k+1}}$
=$\frac{2\sqrt{(k+1)(k+2)}-2k-3}{\sqrt{k+1}}$=$\frac{\sqrt{4{k}^{2}+12k+8}-\sqrt{4{k}^{2}+12k+9}}{\sqrt{k+1}}$<0,
∴$2(\sqrt{k+1}-1)+\frac{1}{{\sqrt{k+1}}}>2(\sqrt{k+2}-1)$,∴$1+\frac{1}{{\sqrt{2}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}>2(\sqrt{k+2}-1)$,
∴n=k+1时,不等式也成立,∴?n∈N*,原不等式成立
点评 本题考查数学归纳法,用好归纳假设是关键,考查逻辑推理与证明的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -7 | B. | -1 | C. | $\frac{13}{3}$ | D. | -1或-7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com