精英家教网 > 高中数学 > 题目详情
18.若直线经过A(0,3),B(0,-4)两点,则直线AB的斜率(  )
A.1B.0C.-1D.不存在

分析 直接利用直线的斜率公式以及点的坐标的特点判断即可.

解答 解:由直线过过A(0,3),B(0,-4)两点,
故直线的斜率不存在,
故选:D.

点评 本题主要考查直线的斜率公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知a为实数,函数f(x)=x3-ax2-4x+4a满足f′(1)=0.
(1)求a的值;
(2)求f(x)的单调区间和极值;
(3)若方程f(x)=m只有一个实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线的方程为C:x2=4y,过点Q(0,2)的一条直线与抛物线C交于A,B两点,若抛物线在A,B两点的切线交于点P.
(1)求点P的轨迹方程;
(2)设直线PQ与直线AB的夹角为α,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)用分析法证明:$\sqrt{6}-\sqrt{5}>2\sqrt{2}-\sqrt{7}$
(2)已知函数f(x)对其定义域的任意两个实数a,b.当a<b时,都有f(a)<f(b).用反证法证明f(x)=0至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈({0,\frac{π}{,2}})$,下列不等式中不成立的是(  )
A.sinα+cosα>1B.sinα-cosα<1C.cos(α+β)>cos(α-β)D.sin(α+β)>sin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且a2=2,S6=21
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{(n+1){a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=f'(1)ex-1-f(0)x+x2,则f'(1)=2e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2sin(x-\frac{π}{3})$,x∈R.将函数f(x)图象上的所有的点向左平行移动$\frac{π}{6}$个单位,得到函数g(x)的图象
(1)写出函数g(x)的表达式,
(2)求g(x)的最值及相应自变量x集合.

查看答案和解析>>

同步练习册答案