精英家教网 > 高中数学 > 题目详情
设实数a,b满足2a+b=9.
(i)若|9-b|+|a|<3,求x的取值范围;
(ii)若a,b>0,且z=a2b,求z的最大值.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(i)由题意可得|9-b|=2|a|,不等式|9-b|+|a|<3可化为|a|<1,由此解得a的范围.
(ii)因为a,b>0,2a+b=9,再根据z=a2b=a•a•b,利用基本不等式求得它的最大值.
解答: 解:(i)由2a+b=9得9-b=2a,即|9-b|=2|a|.
所以|9-b|+|a|<3可化为3|a|<3,即|a|<1,解得-1<a<1.
所以a的取值范围-1<a<1.
(ii)因为a,b>0,2a+b=9,
所以z=a2b=a•a•b≤(
a+a+b
3
)3=(
2a+b
3
)3=33=27
,当且仅当a=b=3时,等号成立.
故z的最大值为27.…(7分)
点评:本题主要考查绝对值不等式的解法,基本不等式的应用,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点A(sin215°,cos215°)在直角坐标平面上位于第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*),其前n项和为Sn,给出下列四个命题:
①若{an}是等差数列,则三点(10,
S10
10
)
(100,
S100
100
)
(110,
S110
110
)
共线;
②若{an}是等差数列,且a1=-11,a3+a7=-6,则S1、S2、…、Sn这n个数中必然存在一个最大者;
③若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
④若Sn+1=a1+qSn(其中常数a1q≠0),则{an}是等比数列;
⑤若等比数列{an}的公比是q(q是常数),且a1=1,则数列{an2}的前n项和sn=
1-q2n
1-q2

其中正确命题的序号是
 
.(将你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-alnx-x,g(x)=2x-2x
x
+kex
,(e=2.71828…是自然对数的底数).
(1)讨论f(x)在其定义域上的单调性;
(2)若a=2,且不等式xf(x)≥g(x)对于?x∈(0,+∞)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=-2.
(1)试判定该函数的奇偶性;
(2)试判断该函数在R上的单调性;
(3)求f(x)在[-12,12]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两直线l1:ax+2y+6=0,l2:x+(a-1)y+(a2-1)=0,若l1⊥l2,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c.若acosA=bsinB,则,sinAcosA+cos2A=(  )
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

同步练习册答案