【题目】双曲线
的一个焦点
恰好与抛物线
的焦点
重合,且两曲线的一个交点为
,若
,则双曲线的方程为( )
A.
B. ![]()
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数
,使得原
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2012年,在“杂交水稻之父”袁隆平的实验田内种植了
,
两个品种的水稻,为了筛选出更优的品种,在
,
两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:
),通过茎叶图比较两个品种的均值及方差,并从中挑选一个品种进行以后的推广,有如下结论:①
品种水稻的平均产量高于
品种水稻,推广
品种水稻;②
品种水稻的平均产量高于
品种水稻,推广
品种水稻;③
品种水稻比
品种水稻产量更稳定,推广
品种水稻;④
品种水稻比
品种水稻产量更稳定,推广
品种水稻;其中正确结论的编号为( )
![]()
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率
利润
保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(2)设每份保单的保费在20元的基础上每增加
元,对应的销量为
(万份).从历史销售记录中抽样得到如下5组
与
的对应数据:
| 25 | 30 | 38 | 45 | 52 |
销量为 | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知
与
有较强的线性相关关系,且据此计算出的回归方程为
.
![]()
(ⅰ)求参数
的值;
(ⅱ)若把回归方程
当作
与
的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入
每份保单的保费
销量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与圆
交于
,
两点,过点
的直线
与圆
交于
,
两点.
若直线
垂直平分弦
,求实数
的值;
已知点
,在直线
上(
为圆心),存在定点
(异于点
),满足:对于圆
上任一点
,都有
为同一常数,试求所有满足条件的点
的坐标及该常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县位于沙漠地带,人与自然长期进行顽强的斗争,到1998年底全县的绿化率已达到30%。从1999年开始,每年将出现这样的局面,即原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化。
(1)设全县面积为1,1998年底绿化总面积为
,经过n年后绿化总面积为
,求证:
。
(2)至少需要多少年的努力,才能使全县的绿化率超过60%?(年取整数,lg2=0.3010)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:
的一个顶点与抛物线:
的焦点重合,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
,若存在,求出直线l的方程;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5), 第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示。已知第三组的频数是第五组频数的3倍。
![]()
(1)求
的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;
(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”。经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com