精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4.
(1)若l的参数方程中的$t=-\sqrt{2}$时,得到M点,求M的极坐标和曲线C直角坐标方程;
(2)若点P(0,2),l和曲线C交于A,B两点,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

分析 (1)利用极坐标与直角坐标互化的方法得到结论;
(2)利用参数的几何意义,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

解答 解:(1)l的参数方程中的$t=-\sqrt{2}$时,M(-1,1),极坐标为$M(\sqrt{2},\frac{3}{4}π)$,
曲线C的极坐标方程为ρ=4,曲线C的直角坐标方程:x2+y2=16…(5分)
(2)由${(\frac{{\sqrt{2}}}{2}t)^2}+{(2+\frac{{\sqrt{2}}}{2}t)^2}=16$得${t^2}+2\sqrt{2}t-12=0$,${t_1}+{t_2}=-2\sqrt{2},{t_1}•{t_2}=-12$$\frac{1}{|PA|}+\frac{1}{|PB|}=\frac{{|{t_1}|+|{t_2}|}}{{|{t_1}•{t_2}|}}=\frac{{\sqrt{{{(-2\sqrt{2})}^2}-4•(-12)}}}{12}=\frac{{\sqrt{14}}}{6}$…(10分)

点评 本题考查极坐标与直角坐标互化,考查参数方程的运用,考查参数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若直线AB的方程为$\sqrt{3}$x+y-7=0,则直线AB的倾斜角是(  )
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一种饮料每箱装有6听,经检测,某箱中每听的容量(单位:ml)如以下茎叶图所示.
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=x+yi(x,y∈R)满足$|{\overline z}|≤1$,则y≥x-1的概率为(  )
A.$\frac{3}{4}-\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{3}{4}+\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)单调递减区间;
(2)已知△ABC中,满足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图.为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为(  )
A.$\frac{11}{42}$B.$\frac{1}{2}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.平面上两定点F1(-1,0),F2(1,0),动点P满足|PF1|+|PF2|=k
(1)求动点P的轨迹;
(2)当k=4时,动点P的轨迹为曲线C,已知$M(-\frac{1}{2},0)$,过M的动直线l(斜率存在且不为0)与曲线C交于P,Q两点,S(2,0),直线l1:x=-3,SP,SQ分别与l1交于A,B两点.A,B,P,Q坐标分别为A(xA,yA),B(xB,yB),P(xP,yP),Q(xQ,yQ),求证:$\frac{{\frac{1}{y_A}+\frac{1}{y_B}}}{{\frac{1}{y_P}+\frac{1}{y_Q}}}$为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={-2,-1,0,2},B={x|x2=2x},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和为${S_n}={2^n}-1$,则此数列的通项公式为an=2n-1

查看答案和解析>>

同步练习册答案