| A. | 39 | B. | 40 | C. | 57 | D. | 58 |
分析 根据题意和${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求出的an,代入通项公式即可求出所求式子的值.
解答 解:当n=1时,S1=12+1=2,
当n≥2时,an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1,
又n=1时,a1=2-1=1,不满足上式,
∴其通项公式为$\left\{\begin{array}{l}{2,n=1}\\{2n-1,n≥2}\end{array}\right.$,
∴a9+a10+a11=17+19+21=57,
故选:C.
点评 本题考查了数列的通项公式求法:公式法,熟练运用${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求出数列的通项公式是解本题的关键,注意验证n=1是否成立.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{6}$) | C. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | D. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=-8 | B. | x=-4 | C. | x=-2 | D. | x=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | [1,2] | C. | [-2,1] | D. | [-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com