【题目】如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD, PA=AD=2,E,F分别为PA,AB的中点,且DF⊥CE.
![]()
(1)求AB的长;
(2)求直线CF与平面DEF所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
![]()
经计算:
,
,
,
,
,
,
,其中
分别为试验数据中的温度和死亡株数,
.
(1)若用线性回归模型,求
关于
的回归方程
(结果精确到
);
(2)若用非线性回归模型求得
关于
的回归方程为
,且相关指数为
.
(i)试与(1)中的回归模型相比,用
说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为
时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
;相关指数为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)
(1)应抽查男生与女生各多少人?
(2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为
.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.
![]()
男生 | 女生 | 总计 | |
每周平均课外阅读时间不超过2小时 | |||
每周平均课外阅读时间超过2小时 | |||
总计 |
附:![]()
| 0.100 | 0.050 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com