精英家教网 > 高中数学 > 题目详情

【题目】为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;

(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为求随机变量的分布列及其数学期望.

【答案】(1);(2)见解析

【解析】

(1)根据条件,列出各项指标的表格,根据条件概率列出各种情况,由古典概率求解。

(2)根据(1),列出X的分布列,根据数学期望的公式求得数学期望。

x

2

3

3

1

2

2

2

2

2

2

y

2

2

3

2

3

3

2

3

1

2

z

3

3

3

2

2

3

2

3

1

2

w

7

8

9

5

7

8

6

8

4

6

(1)由题可知:建模能力一级的学生是建模能力二级的学生是建模能力三级的学生是.

记“所取的两人的建模能力指标相同”为事件,记“所取的两人的综合指标值相同”为事件.

(2)由题可知,数学核心素养一级的学生为: ,非一级的学生为余下4人

的所有可能取值为0,1,2,3.

随机变量的分布列为:

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为,且过点.

(1)求椭圆的标准方程;

(2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为圆上的动点,点轴上的投影为,动点满足,动点的轨迹为.

(1)求的方程;

(2)设轴正半轴的交点为,过点的直线的斜率为交于另一点为.若以点为圆心,以线段长为半径的圆与有4个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:fx)=x2mxnm, nR).

1)若m+n0,解关于x的不等式fxx(结果用含m式子表示);

2)若存在实数m,使得当x[12]时,不等式xfx≤4x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数为( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.

(I)记甲投中的次数为,求的分布列及数学期望

(Ⅱ)求乙至多投中2次的概率;

(Ⅲ)求乙恰好比甲多投进2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若函数的图象在处的切线斜率为1,求实数的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)若函数在[1,2]上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱柱中,中点,中点.

(1)证明:平面

(2)若直线与平面所成的角为,求的长.

查看答案和解析>>

同步练习册答案